Законы ома цепи однородные

Рубрики Статьи

Физика — ответы на экзамен 1-29 / Закон Ома для однородного и неоднородного участка цепи

Дифференциальная форма закона Ома. Найдем связь между плотностью тока j и напряженностью поля Е в одной и той же точке проводника. В изотропном проводнике упорядоченное движение носителей тока происходит в направлении вектора Е. Поэтому направления векторов j и Е совпадают. Рассмотрим в однородной изотропной среде элементарный объем с образующими, параллельными вектору Е, длиной , ограниченной двумя эквипотенциальными сечениями 1 и 2 (рис. 4.3).

Обозначим их потенциалы и, а среднюю площадь сечения через. Используя закон Ома, получим для тока, или для плотности тока, следовательно

.

Перейдем к пределу при , тогда рассматриваемый объем можно считать цилиндрическим, а поле внутри него однородным, так что

,

где Е — напряженность электрического поля внутри проводника. Учитывая, что j и Есовпадают по направлению, получаем

.

Это соотношение является дифференциальной формой закона Ома для однородного участка цепи. Величина называется удельной проводимостью. На неоднородном участке цепи на носители тока действуют, кроме электростатических сил , еще и сторонние силы, следовательно, плотность тока в этих участках оказывается пропорциональной сумме напряженностей. Учет этого приводит кдифференциальной форме закон Ома для неоднородного участка цепи.

.

Для того чтобы выяснить, от чего зависит сила тока на этих участках, необходимо уточнить понятие напряжения.

Рассмотрим вначале однородный участок цепи (рис. 1, а). В этом случае работу по перемещению заряда совершают только силы стационарного электрического поля, и этот участок характеризуют разностью потенциалов Δφ. Разность потенциалов на концах участка Δφ=φ1−φ2=AKq, где AK — работа сил стационарного электрического поля. Неоднородный участок цепи (рис. 1, б) содержит в отличие от однородного участка источник ЭДС, и к работе сил электростатического поля на этом участке добавляется работа сторонних сил. По определению, Aelq=φ1−φ2, где q — положительный заряд, который перемещается между любыми двумя точками цепи; φ1−φ2 — разность потенциалов точек в начале и конце рассматриваемого участка; Astq=ε. Тогда говорят о напряжении для напряженности: Eстац. э. п. = Eэ/стат. п. + Eстор. Напряжение U на участке цепи представляет собой физическую скалярную величину, равную суммарной работе сторонних сил и сил электростатического поля по перемещению единичного положительного заряда на этом участке:

Из этой формулы видно, что в общем случае напряжение на данном участке цепи равно алгебраической сумме разности потенциалов и ЭДС на этом участке. Если же на участке действуют только электрические силы (ε = 0), то U=φ1−φ2. Таким образом, только для однородного участка цепи понятия напряжения и разности потенциалов совпадают.

где R — общее сопротивление неоднородного участка.

ЭДС ε может быть как положительной, так и отрицательной. Это связано с полярностью включения ЭДС в участок: если направление, создаваемое источником тока, совпадает с направлением тока, проходящего в участке (направление тока на участке совпадает внутри источника с направлением от отрицательного полюса к положительному), т.е. ЭДС способствует движению положительных зарядов в данном направлении, то ε > 0, в противном случае, если ЭДС препятствует движению положительных зарядов в данном направлении, то ε < 0.

Закон Ома для однородного, неоднородного участка цепи и замкнутой (полной) цепи. Сопротивление проводников. Дифференциальная форма закона Ома

Закон Ома для однородного участка цепи:

Участок цепи называется однородным, если в его состав не входит источник тока. I=U/R, 1 Ом – сопротивление такого проводника, в котором сила в 1А течет при 1В.

Величина сопротивления зависит от формы и свойств материала проводника. Для однородного цилиндрического проводника его R=ρl/S, ρ – величина, зависящая от использованного материала – удельное сопротивление вещества, из ρ=RS/l следует, что (ρ) = 1 Ом*м. Величина, обратная ρ – удельная проводимость γ=1/ρ.

Экспериментально установлено, что при повышении температуры электрическое сопротивление у металлов увеличивается. При не слишком низких температурах удельное сопротивление металлов растет

абсолютной температуре p = α*p0*T, p0 – удельное сопротивление при 0 о С, α – температурный коэффициент. Для большинства металлов α = 1/273 = 0,004 К -1 . p = p0*(1+ α*t), t – температура в о С.

Согласно классической электронной теории металлов в металлах с идеальной кристаллической решеткой электроны движутся не испытывая сопротивления (p = 0).

Причина, вызывающая появление электрического сопротивления – посторонние примеси и физические дефекты кристаллической решетки, а также тепловое движение атомов. Амплитуда колебаний атомов зависит от t. Зависимость удельного сопротивления от t является сложной функцией:

p(T) = pост + pид., pост – остаточное удельное сопротивление, pид.— идеальное сопротивление металла.

Идеальное сопротивление соответствует абсолютно чистому металлу и определяется лишь тепловыми колебаниями атомов. На основании общих соображений уд. сопротивление ид. металла должно стремиться к 0 при T → 0. Однако удельное сопротивление как функция слагается из суммы независимых слагаемых, поэтому в связи с наличием примесей и др. дефектов кристаллической решетки удельного сопротивления при понижении t → к некоторому росту пост. pост . Иногда для некоторых металлов температурная зависимость p проходит через минимум. Величина ост. уд. сопротивления зависит от наличия дефектов в решетке и содержания примесей.

j=γ*E – закон Ома в дифференцированной форме, описывающий процесс в каждой точке проводника, где j – плотность тока, Е – напряженность электрического поля.

Цепь включает резистор R и источник тока. На неоднородном участке цепи на носители тока действуют кроме электростатических сил сторонние силы. Сторонние силы способны вызвать упорядоченное движение носителей тока, такие как электростатические. На неоднородном участке цепи к полю электрических зарядов добавляется поле сторонних сил, создаваемое источником ЭДС. Закон Ома в дифференцированной форме: j=γE. Обобщая формулу на случай неоднородного проводника j=γ(E+E*)(1).

От закона Ома в дифференцированной форме для неоднородного участка цепи можно перейти к интегральной форме закона Ома для этого участка. Для этого рассмотрим неоднородный участок. В нем поперечное сечение проводника может быть непостоянным. Допустим, что внутри этого участка цепи существует линия, которую будем называть контуром тока, удовлетворяющая:

1. В каждом сечении перпендикулярно контуру величины j, γ, E, E* имеют одинаковые значения.

2. j, E и Е* в каждой точке направлены по касательной к контуру.

Выберем произвольно направление движения по контуру. Пусть выбранное направление соответствует перемещению от 1 к 2. Возьмем элемент проводника площадью S и элементом контура dl. Спроецируем векторы, входящие в (1) на элемент контура dl: j=γ(E+E*) (2).

I вдоль контура равна проекции плотности тока на площадь: I=jS (3).

Удельная проводимость: γ=1/ρ. Заменяя в (2) I/S=1/ρ(E+E*).Умножим на dl и проинтегрируем вдоль контура ∫Iρdl/S=∫Eedl+∫E*edl. Учтем, что ∫ρdl/S=R, а ∫Eedl=(φ12), ∫E*edl= ε12, IR= ε12+(φ12). ε12, как и I – величина алгебраическая, поэтому условились, когда ع способствует движению положительных носителей тока в выбранном направлении 1-2, считать ε12>0. Но на практике этот случай, когда при обходе участка цепи в начале встречается отрицательный полюс, затем положительный. Если ع препятствует движению положительных носителей, в выбранном направлении, то ε12 2 Rτ – это уравнение было установлено экспериментально Джоулем и независимо от него Ленцем и носит название закона Джоуля-Ленца в интегральной форме. Полученная формула позволяет определить тепло во всем проводнике.

Законы ома цепи однородные

1.8. Электрический ток. Закон Ома

Если изолированный проводник поместить в электрическое поле то на свободные заряды q в проводнике будет действовать сила В результате в проводнике возникает кратковременное перемещение свободных зарядов. Этот процесс закончится тогда, когда собственное электрическое поле зарядов, возникших на поверхности проводника, скомпенсирует полностью внешнее поле. Результирующее электростатическое поле внутри проводника будет равно нулю (см. § 1.5).

Однако, в проводниках при определенных условиях может возникнуть непрерывное упорядоченное движение свободных носителей электрического заряда. Такое движение называется электрическим током . За направление электрического тока принято направление движения положительных свободных зарядов. Для существования электрического тока в проводнике необходимо создать в нем электрическое поле.

Количественной мерой электрического тока служит сила тока I – скалярная физическая величина, равная отношению заряда Δ q , переносимого через поперечное сечение проводника (рис. 1.8.1) за интервал времени Δ t , к этому интервалу времени:

Если сила тока и его направление не изменяются со временем, то такой ток называется постоянным .

В Международной системе единиц СИ сила тока измеряется в амперах (А). Единица измерения тока 1 А устанавливается по магнитному взаимодействию двух параллельных проводников с током (см. § 1.16).

Постоянный электрический ток может быть создан только в замкнутой цепи , в которой свободные носители заряда циркулируют по замкнутым траекториям. Электрическое поле в разных точках такой цепи неизменно во времени. Следовательно, электрическое поле в цепи постоянного тока имеет характер замороженного электростатического поля. Но при перемещении электрического заряда в электростатическом поле по замкнутой траектории, работа электрических сил равна нулю (см. § 1.4). Поэтому для существования постоянного тока необходимо наличие в электрической цепи устройства, способного создавать и поддерживать разности потенциалов на участках цепи за счет работы сил неэлектростатического происхождения . Такие устройства называются источниками постоянного тока . Силы неэлектростатического происхождения, действующие на свободные носители заряда со стороны источников тока, называются сторонними силами .

Природа сторонних сил может быть различной. В гальванических элементах или аккумуляторах они возникают в результате электрохимических процессов, в генераторах постоянного тока сторонние силы возникают при движении проводников в магнитном поле. Источник тока в электрической цепи играет ту же роль, что и насос, который необходим для перекачивания жидкости в замкнутой гидравлической системе. Под действием сторонних сил электрические заряды движутся внутри источника тока против сил электростатического поля, благодаря чему в замкнутой цепи может поддерживаться постоянный электрический ток.

При перемещении электрических зарядов по цепи постоянного тока сторонние силы, действующие внутри источников тока, совершают работу.

Физическая величина, равная отношению работы A ст сторонних сил при перемещении заряда q от отрицательного полюса источника тока к положительному к величине этого заряда, называется электродвижущей силой источника (ЭДС):

Таким образом, ЭДС определяется работой, совершаемой сторонними силами при перемещении единичного положительного заряда. Электродвижущая сила, как и разность потенциалов, измеряется в вольтах (В).

При перемещении единичного положительного заряда по замкнутой цепи постоянного тока работа сторонних сил равна сумме ЭДС, действующих в этой цепи, а работа электростатического поля равна нулю.

Цепь постоянного тока можно разбить на отдельные участки. Те участки, на которых не действуют сторонние силы (т. е. участки, не содержащие источников тока), называются однородными . Участки, включающие источники тока, называются неоднородными .

При перемещении единичного положительного заряда по некоторому участку цепи работу совершают как электростатические (кулоновские), так и сторонние силы. Работа электростатических сил равна разности потенциалов Δφ12 = φ1 – φ2 между начальной (1) и конечной (2) точками неоднородного участка. Работа сторонних сил равна по определению электродвижущей силе 12, действующей на данном участке. Поэтому полная работа равна

Величину U 12 принято называть напряжением на участке цепи 1–2. В случае однородного участка напряжение равно разности потенциалов:

Немецкий физик Г. Ом в 1826 году экспериментально установил, что сила тока I , текущего по однородному металлическому проводнику (т. е. проводнику, в котором не действуют сторонние силы), пропорциональна напряжению U на концах проводника:

Величину R принято называть электрическим сопротивлением . Проводник, обладающий электрическим сопротивлением, называется резистором . Данное соотношение выражает закон Ома для однородного участка цепи: сила тока в проводнике прямо пропорциональна приложенному напряжению и обратно пропорциональна сопротивлению проводника.

В СИ единицей электрического сопротивления проводников служит ом (Ом). Сопротивлением в 1 Ом обладает такой участок цепи, в котором при напряжении 1 В возникает ток силой 1 А.

Проводники, подчиняющиеся закону Ома, называются линейными . Графическая зависимость силы тока I от напряжения U (такие графики называются вольт-амперными характеристиками , сокращенно ВАХ) изображается прямой линией, проходящей через начало координат. Следует отметить, что существует много материалов и устройств, не подчиняющихся закону Ома, например, полупроводниковый диод или газоразрядная лампа. Даже у металлических проводников при токах достаточно большой силы наблюдается отклонение от линейного закона Ома, так как электрическое сопротивление металлических проводников растет с ростом температуры.

Для участка цепи, содержащего ЭДС, закон Ома записывается в следующей форме:

Это соотношение принято называть обобщенным законом Ома или законом Ома для неоднородного участка цепи .

На рис. 1.8.2 изображена замкнутая цепь постоянного тока. Участок цепи ( cd ) является однородным.

Обязательным условием существования электрического тока является наличие электрического поля, для существования которого, в свою очередь, необходима разность потенциалов (напряжение). Ток будет направлен в сторону уменьшения потенциалов (на рисунке – влево), а свободные электроны будут двигаться в обратную сторону.

На концах участка проводника заданы потенциалы φ_1 и φ_2, причем φ_1>φ_2. Напряжение в таком случае можно найти по формуле:

В 1826 году Георг Ом, обобщив итоги опытов, показавших, что, чем больше напряжение на участке, тем больше сила тока, проходящего через него, получил зависимость, названную законом Ома. В ходе экспериментов Ом выявил, что различные проводники при одинаково заданном напряжении будут проводить ток по-разному, т.е., каждый проводник обладает различной мерой проводимости. Эту величину назвали электрическим сопротивлением.

Определеение Закона Ома для однородного участка цепи гласит: сила тока для однородного проводника на участке цепи прямо пропорциональна напряжению на этом участке и обратно пропорциональна сопротивлению проводника.

Формула закона Ома для однородного участка цепи

  • I [А] – сила тока,
  • U [В] – напряжение,
  • R [Ом] – электрическое сопротивление.

Сопротивление – главная характеристика проводника. В зависимости от строения проводника, в них существует различное количество узлов кристаллической решетки и атомов примесей, взаимодействуя с которыми электроны замедляются.

Сопротивление будет зависеть от рода и размеров проводника:

где:

  • P — удельное сопротивление проводника (табличная величина, характеризующая способность материала к сопротивлению).
  • l [м] – длина проводника,
  • S [мм2] – площадь поперечного сечения проводника.

Решение задачи по теме Закон Ома для однородного участка цепи

Рассчитать силу тока, проходящую по медному проводу длиной 100 м, площадью поперечного сечения 1 мм2, если к концам провода приложено напряжение 8,5 В.

17.3. Закон Ома для участка цепи. Сопротивление проводников

Ом экспериментально установил закон, согласно которому сила тока, текущего по однородному металлическому проводнику, пропорциональна падению напряжения U на проводнике:

Однородным называется участок цепи, в котором не действуют сторонние силы.

Величина R называется электрическим сопротивлением проводника. Единицей сопротивления служит Ом, равный сопротивлению такого проводника, в котором при напряжении 1В течет ток в 1 А.

Величина сопротивления зависит от формы и размеров проводника, а также от свойств материала, из которого он сделан. Для однородного цилиндрического проводника .

где — длина проводника, S — площадь поперечного сечения, — зависящий от свойств материала коэффициент, называемый удельным электрическим сопротивлением вещества.

Величина обратная сопротивлению называется проводимостью

Для большинства металлов удельное сопротивление растет с температурой приблизительно по линейному закону.

где — удельное сопротивление при 0°С, t — температура в градусах Цельсия, — постоянный коэффициент, численно равный примерно 1/273.Закон Ома можно записать в дифференциальной форме. Выделим в проводнике элементарный цилиндрический объем dV с образующими, dl параллельными вектору плотности тока в данной точке (рис. 17.2). Через поперечное сечение dS цилиндра течет ток силой . Напряжение, приложенное к цилиндру, равно , где Е — напряженность поля в данном месте. Сопротивление цилиндра . Подставив эти значения в уравнение (17.5), получим

Носители заряда в каждой точке движутся в направлении вектора . Поэтому направления векторов и совпадают. Таким образом, можно написать

Закон Ома для неоднородного участка цепи

При прохождении электрического тока в замкнутой цепи на свободные заряды действуют силы со стороны стационарного электрического поля и сторонние силы. При этом на отдельных участках этой цепи ток создается только стационарным электрическим полем. Такие участки цепи называются однородными. На некоторых участках этой цепи, кроме сил стационарного электрического поля, действуют и сторонние силы. Участок цепи, на котором действуют сторонние силы, называют неоднородным участком цепи.

Рассмотрим вначале однородный участок цепи (рис. 1, а). В этом случае работу по перемещению заряда совершают только силы стационарного электрического поля, и этот участок характеризуют разностью потенциалов Δφ. Разность потенциалов на концах участка \(

\Delta \varphi = \varphi_1 — \varphi_2 = \frac\), где AK — работа сил стационарного электрического поля. Неоднородный участок цепи (рис. 1, б) содержит в отличие от однородного участка источник ЭДС, и к работе сил электростатического поля на этом участке добавляется работа сторонних сил. По определению, \(

\frac> = \varphi_1 — \varphi_2\), где q — положительный заряд, который перемещается между любыми двумя точками цепи; \(

\varphi_1 — \varphi_2\) — разность потенциалов точек в начале и конце рассматриваемого участка; \(

\frac> = \varepsilon\). Тогда говорят о напряжении для напряженности: Eстац. э. п. = Eэ/стат. п. + Eстор. Напряжение U на участке цепи представляет собой физическую скалярную величину, равную суммарной работе сторонних сил и сил электростатического поля по перемещению единичного положительного заряда на этом участке:

U = \frac + \frac> = \varphi_1 — \varphi_2 + \varepsilon .\)

Из этой формулы видно, что в общем случае напряжение на данном участке цепи равно алгебраической сумме разности потенциалов и ЭДС на этом участке. Если же на участке действуют только электрические силы (ε = 0), то \(

U = \varphi_1 — \varphi_2\). Таким образом, только для однородного участка цепи понятия напряжения и разности потенциалов совпадают.

Закон Ома для неоднородного участка цепи имеет вид:

ЭДС ε может быть как положительной, так и отрицательной. Это связано с полярностью включения ЭДС в участок: если направление, создаваемое источником тока, совпадает с направлением тока, проходящего в участке (направление тока на участке совпадает внутри источника с направлением от отрицательного полюса к положительному), т.е. ЭДС способствует движению положительных зарядов в данном направлении, то ε > 0, в противном случае, если ЭДС препятствует движению положительных зарядов в данном направлении, то ε

Журнал «Квант»

Купить трубочный табак, трубки, а также аксессуары можно в «SmartSmoker».

Закон Ома для однородного участка цепи

Участок цепи, на котором не действуют сторонние силы, приводящие к возникновению ЭДС (рис. 1), называется однородным.

Закон Ома для однородного участка цепи был установлен экспериментально в 1826 г. Г. Омом.

Согласно этому закону, сила тока I в однородном металлическом проводнике прямо пропорциональна напряжению U на концах этого проводника и обратно пропорциональна сопротивлению R этого проводника:

На рисунке 2 изображена схема электрической цепи, позволяющая экспериментально проверить этот закон. В участок MN цепи поочередно включают проводники, обладающие различными сопротивлениями.

Напряжение на концах проводника измеряется вольтметром и может изменяться с помощью потенциометра. Силу тока измеряют амперметром, сопротивление которого ничтожно мало (RA ≈ 0). График зависимости силы тока в проводнике от напряжения на нем — вольт-амперная характеристика проводника — приведен на рисунке 3. Угол наклона вольт-амперной характеристики зависит от электрического сопротивления проводника R (или его электропроводимости G)\[

\operatorname \alpha = \frac IU = G\].

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. — Мн.: Адукацыя i выхаванне, 2004. — C. 253-254.

Смотрите еще:

  • По законам любви и войны По законам военного времени 2 сезон 2018 Все Серии Подряд смотреть онлайн Год: 2018 Режиссер: Максим Мехеда Главные лица: Екатерина Климова, Евгений Воловенко, Максим Дрозд, Сергей Деньга, Алексей Шутов, Екатерина Соломатина, Павел Стонт, Дмитрий Сарансков, Светлана Зельбет, […]
  • Адвокат дьявола роли Кевин Ломакс – молодой адвокат, карьера которого идет в гору. Он выигрывает все свои процессы, чем привлекает внимание не только прессы, но и крупной юридической корпорации. Компания, которой руководит Джон Милтон, делает Ломаксу выгодное предложение – приглашает его на […]
  • Основные средства формы собственности Важные тонкости оформления акта приема-передачи основных средств ОС-1 — правильный образец и актуальный бланк Приемка основных средств, не требующих монтажа, осуществляется на основании передаточного акта. Его составляют две стороны — передающая и принимающая, обоюдно […]
  • Как написать жалобу в уфнс Жалоба на бездействие налоговой инспекции: образец Актуально на: 13 июля 2017 г. Жалоба на бездействие налогового органа (образец) Если плательщик считает, что налоговики бездействовали в то время, когда должны были действовать, и из-за этого нарушены его права (например, ИФНС […]
  • Законы созранения энергии I. Механика Тестирование онлайн Закон сохранения энергии Полная механическая энергия замкнутой системы тел остается неизменной Закон сохранения энергии можно представить в виде Если между телами действуют силы трения, то закон сохранения энергии видоизменяется. Изменение […]
  • Материнский капитал ноябрь Материнский капитал: какие изменения можно ожидать в будущем? Материнский (семейный) капитал как мера поощрения к рождению или усыновлению второго ребенка начал предоставляться в нашей стране с 2007 года, со вступлением в силу Федерального закона от 29 декабря 2006 г. № 256-ФЗ […]
  • Признание страховым случаем инвалидности Признание страховым случаем инвалидности ВЕРХОВНЫЙ СУД РЕСПУБЛИКИ САХА (ЯКУТИЯ) / Павел Щ. обратился в суд с иском к Банку и страховой компании ООО «…» о признании случая страховым, освобождении от выплаты по кредитному договору, понуждении произвести страховое […]
  • Реестр начислений по налогу Реестр начислений по налогу Вопрос: Как сформировать реестр перечисленных сумм НДФЛ в "1С:ЗУП 8" (ред. 3)? Дата публикации 25.09.2017 Использован релиз 3.1.3 Учет перечисленного НДФЛ При регистрации ведомости на выплату ("Ведомость в банк", "Ведомость в кассу", "Ведомость […]